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Abstract. We discuss the noisy optimisation problem, in which function evaluations are

subject to random noise. Adaptation of pure random search to noisy optimisation by repeated
sampling is considered. We introduce and exploit an improving bias condition on noise-affected
pure random search algorithms. Two such algorithms are considered; we show that one

requires infinite expected work to proceed, while the other is practical.
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1. Introduction

This paper reports the results of the Noisy Optimisation group at the Sto-
chastic Global Optimisation 2001 Workshop in Hanmer, New Zealand in
June, 2001. The problem under consideration is as outlined in the pre-
workshop discussion paper also appearing in this issue. Recall that we wish
to

minimise gðxÞ; subject to x 2 S ðPÞ
where S � Rn is a measurable space and g : S! R is a measurable func-
tion. However, we can only approximately observe gðxÞ, which we take to
effectively mean that successive approximate observations of gðxÞ are in
fact independent observations from some probability distribution with
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mean gðxÞ. As a default, we will often assume that this distribution is in
fact the normal distribution with variance r2

x. We will not require g to have
a minimum; rather, an algorithm will be considered to terminate upon
sampling a function value sufficiently small. We will refer to this problem
as the noisy global optimisation problem.
In contrast with the wide attention that global optimisation of determin-

istic functions has received over the last decades, the additional problems
that arise when functions cannot be evaluated exactly, but result, for exam-
ple, from a simulation, have received relatively little attention. Extensions
of the pure random search ðPRSÞ algorithm for traditional global optimisa-
tion to the problem of solving noisy global optimisation problems can be
found in Gurin [9] and Devroye [7]. Recently, several simulated annealing
algorithms have been proposed for solving the noisy global optimisation
problem in the case where the feasible region is discrete (see, e.g., [1]), and
an interesting algorithm with a convergence result for the continuous case
appears in Baumert and Smith [3].
In Section 2 we will introduce a new class of algorithms that generalise

the PRS algorithm, and a stochastic bound condition we call the improving
bias property. After deriving a probabilistic asymptotic convergence guar-
antee, we use the class of generalised PRS algorithms meeting this condi-
tion as our basic framework for suggesting, in Section 3, several potential
implementations.

2. Algorithm

The most elementary stochastic algorithm for solving noiseless global opti-
misation problems is PRS (see, for instance, Brooks [5] or Boender and
Romeijn [4]). In this algorithm, we repeatedly sample points in the feasible
region S from a sampling distribution d, and keep track of the best (with
respect to the objective function value) point sampled:

Pure random search (PRS)
Step 0. Set k ¼ 0. Generate x0 � d and set y0 ¼ gðx0Þ.
Step 1. Generate a point z � d.
Step 2. If gðzÞ < yk, then set ykþ1 ¼ gðzÞ and xkþ1 ¼ z. Otherwise, set

ykþ1 ¼ yk and xkþ1 ¼ xk.
Step 3. Increment k and return to Step 1.

Devroye [6] has shown that the sequence of function values
fYn; n ¼ 0; 1; 2; . . .g converges with probability one to the global minimum
(or infimum) of g over S if d is an absolutely continuous probability distri-
bution. Note that the sampling distribution d is often chosen to be the uni-
form distribution on S.
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Extensions of this algorithm to the solution of noisy global optimisation
problems can be found in Gurin [9] and Devroye [7]. These papers general-
ise PRS directly, using the quite intuitive approach of estimating the value
of gðxÞ as the sample mean of many observations thereof. In Section 3, we
will obtain an algorithm that is similar in spirit to this idea as one of the
possible implementations of our class of algorithms.
Note that each iteration of the PRS algorithm must decide whether the

newly observed point is an improvement over the best point observed
before. This clearly is a trivial matter in noiseless global optimisation. In
the case of noisy global optimisation, however, it is uncertain whether the
previous ‘‘best’’ point or the newly observed one is best. Accordingly we
make the following generalisation:

Generalised pure random search with acceptance rule A (GPRSðAÞ)
Step 0. Set k ¼ 0. Generate x0 � d.
Step 1. Generate a point z � d.
Step 2. With probability Aðk; xk; gðxkÞ; z; gðzÞÞ, set xkþ1 ¼ z. Otherwise,

set xkþ1 ¼ xk.
Step 3. Increment k and return to Step 1.

The acceptance rule A is a function mapping f0; 1; . . .g � S� R� S� R

to ½0; 1�. It encapsulates the influence of the iteration counter and the loca-
tions and values of the incumbent and candidate points on whether the
candidate is accepted. The acceptance rule’s probabilisticity describes ran-
domness due to observational noise (as well as any deliberate randomness
in the algorithm).
As a simple example, suppose that the observational noise is normal

with variance r2
x ¼ 1 for each x 2 S. Consider the following algorithm:

Example algorithm
Step 0. Set k ¼ 0. Generate x0 � d.
Step 1. Generate a point z � d.
Step 2. Let yx and yz be noisy evaluations of gðxkÞ and gðzÞ.
Step 3. If yz < yx, set xkþ1 ¼ z. Otherwise, set xkþ1 ¼ xk.
Step 4. Increment k and return to Step 1.

This algorithm falls within the GPRS class: its acceptance rule A is given by

Aðk;x; gx; z; gzÞ ¼ U
gx � gz

ffiffiffi

2
p

� �

ð1Þ

for any integer k, domain points x; z and real numbers gx; gz, where U
denotes the standard normal cumulative distribution function. Also it is
readily implementable, whereas the problem’s observational noise prevents
the implementation of standard PRS.
Let us take the opportunity to dispel one possible point of confusion.

Step 2 in GPRS does not require us to determine gðzÞ and gðxkÞ, evaluate
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Aðk;xk; gðxkÞ; z; gðzÞÞ, and use this probability to choose between the can-
didate and the incumbent. Indeed, that would be impossible, due to the
observational noise. Rather, the acceptance rule A is probabilistic due to
our lack of precise knowledge of g. The example algorithm above illus-
trates this; there is no explicit randomisation, but the observational noise
leads to the probabilistic acceptance rule (1).
While the example algorithm is an approximation to PRS which can be

implemented in the noisy case, it does not converge to the global optimum;
it is apparent that, though correct acceptance-rejection decisions will domi-
nate the algorithm’s behaviour, it will never stop making occasional incor-
rect decisions. In an effort to describe stochastic algorithms for noisy
optimisation which do converge to the global optimum, we now define the
‘‘improving bias’’ property.
Let fak : R! ½0; 1�g be a sequence of nondecreasing acceptance probabil-

ity bound functions converging pointwise on Rnf0g to the Heaviside step
function H (i.e., the function that takes the value 0 on the set of negative
reals, and the value 1 on the set of nonnegative reals). If, for every k, x, z
and g with gðxÞ < gðzÞ we have

Aðk;x; gðxÞ; z; gðzÞÞOakðgðxÞ � gðzÞÞ;
and for every k, x, z and g with gðxÞ > gðzÞ we have

Aðk;x; gðxÞ; z; gðzÞÞPakðgðxÞ � gðzÞÞ;
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Figure 1. The acceptance probability at the kth step of a practical algorithm may depend on the

candidate z and the incumbent x, as well as the value of the objective function at these points.

The improving bias property restricts the acceptance probability to the shaded region. Since the

Heaviside step function H represents the correct decision (which can only be guessed in noisy

optimisation), the function ak can be thought of as a lower bound on the accuracy of the accep-

tance-rejection decision.
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then we say that A satisfies the improving bias property with parameters
fakg.
This property bounds the accuracy of the acceptance–rejection decision.

PRS makes the decision with perfect accuracy, and its acceptance probabil-
ity is given by HðgðxkÞ � gðzÞÞ. The improving bias property bounds the
acceptance probability between ak and the ideal probability H. This is illus-
trated in Figure 1.
The following theorem demonstrates the significance of the improving

bias property to the asymptotic behaviour of GPRS.

THEOREM 2.1. If A satisfies the improving bias property; then the
GPRSðAÞ algorithm converges in the sense that, if

By � fx 2 S : gðxÞ O yg
has positive measure under d, then pk

y � P½Xk 2 By� ! 1 as k!1.

Proof. Let p denote the cumulative distribution function of gðXÞ, where
X � d, that is, let

pðtÞ ¼ dðfx 2 S : gðxÞ O tgÞ
for all real t. Let z denote the candidate point at the ðkþ 1Þst pass through
the loop, so that xkþ1 is probabilistically set to equal either xk or z. Since
xk and z are independent,

pkþ1
y ¼PðgðXkþ1ÞOy jgðXkÞOy and gðZÞOyÞP½gðXkÞOy�P½gðZÞOy�

þPðgðXkþ1ÞOy jgðXkÞOy and gðZÞ> yÞP½gðXkÞOy�P½gðZÞ> y�
þPðgðXkþ1ÞOy jgðXkÞ> y and gðZÞOyÞP½gðXkÞ> y�P½gðZÞOy�
þPðgðXkþ1ÞOy jgðXkÞ> y and gðZÞ> yÞP½gðXkÞ> y�P½gðZÞ> y�

Ppk
ypðyÞþpk

yð1�pðyÞÞEð1�akðgðXkÞ�gðZÞÞ jgðXkÞOy and gðZÞ> yÞ

þ ð1�pk
yÞpðyÞEðakðgðXkÞ�gðZÞÞ jgðXkÞ> y and gðZÞOyÞ

P pk
ypðyÞþpk

yð1�pðyÞÞEð1�akðy�gðZÞÞ jgðXkÞOy and gðZÞ> yÞ

þ ð1�pk
yÞpðyÞEðakðy�gðZÞÞ jgðXkÞ> y and gðZÞOyÞ

¼ pk
ypðyÞþpk

yð1�pðyÞÞEð1�akðy�gðZÞÞ jgðZÞ> yÞ

þ ð1�pk
yÞpðyÞEðakðy�gðZÞÞ jgðZÞOyÞ:

Now

Eðakðy� gðZÞÞ j gðZÞOyÞ ¼ 1

1� pðyÞ

Z 1

y

akðy� cÞdpðcÞ ! 1 as k!1

by the Dominated Convergence Theorem (see, e.g., [2]); thus there exists
K1 such that
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Eðakðy� gðZÞÞ j gðZÞO yÞP 1

2
; ð3Þ

whenever kPK1. Similarly
Eð1� akðy� gðZÞÞ j gðZÞ > yÞ ! 1;

thus since, for small positive �, pðyÞ�=½2ð2� �Þð1� pðyÞÞ� is positive, there
exists some K2 such that

Eð1� akðy� gðZÞÞ j gðZÞ > yÞP1� pðyÞ�
2ð2� �Þð1� pðyÞÞ ; ð4Þ

whenever kPK2.
By substituting the bounds (3) and(4) into (2), we see that for any small

positive �, we can choose K ¼ maxfK1;K2g such that

pkþ1
y Ppk

ypðyÞ þ pk
yð1� pðyÞÞ 1� pðyÞ�

2ð2� �Þð1� pðyÞÞ

� �

þ 1

2
ð1� pk

yÞpðyÞ

¼ 2� pðyÞ � �
2� �

� �

pk
y þ

pðyÞ
2

;

whenever kPK. Reiterating this inequality gives

pkþl
y P

2� pðyÞ � �
2� �

� �l

pk
y þ

pðyÞ 1� 2�pðyÞ��
2��

� �l
� �

2 1� 2�pðyÞ��
2��

� �� �

P 1� �
2

� �

1� 2� pðyÞ � �
2� �

� �l
 !

;

whenever kPK and lP 0. In particular, whenever

lP
ln �

2

ln 2�pðyÞ��
2��

� �;

we will have

1� 2� pðyÞ � �
2� �

� �l

P1� �
2
;

and thus

pkþl
y P 1� �

2

� �2

> 1� �:
Since pkþl

y is a probability and thus bounded above by 1, it follows that
pk
y ! 1 as k!1. (

3. Implementing GPRS with Improving Bias

In this section, we consider the implementation of GPRS algorithms with
the improving bias property. Step 2 of the GPRS algorithm requires that
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we (fallibly) decide which of the current point xk and the candidate point z
has the better value of g, and the improving bias property requires the
accuracy of these decisions to improve as the algorithm progresses. As
described in Section 1, the decisions must be based only on noisy observa-
tions of g. Clearly, more accuracy requires a greater number of noisy eval-
uations of g, and any satisfactory algorithm will strike a compromise
between the accuracy of the decisions and the number of evaluations each
decision requires.
This section presents an informal discussion of three possible

approaches. Firstly we investigate the possibility of uniform convergence of
the acceptance probability bounds ak, that is, a decision method whose
error rate converges to zero at a fixed rate, regardless of the magnitude of
the improvement or deterioration entailed in acceptance of the candidate
point. Secondly we look at the possibility of making a number of noisy
observations of gðxkÞ and gðzÞ which grows with k in a predetermined
sequence. Lastly, we consider an intermediate approach suggested by the
theory of sequential analysis.

3.1. UNIFORM CONVERGENCE OF ak

The method addressed in this subsection is as follows. Let ak be a sequence
of positive numbers, less than 1/2 and tending to 0.

Increasing confidence acceptance–rejection search (ICARS)
Step 0. Set k ¼ 0. Generate x0 � d.
Step 1. Generate a point z � d.
Step 2. Conduct a sequential test to choose between the hypotheses

H<:gðzÞ < gðxkÞ and H>:gðzÞ > gðxkÞ, gathering as many samples
of gðzÞ and gðxkÞ as necessary to provide a result with confidence
level ak.

Step 3. If the sample mean estimating gðzÞ is less than the sample mean
estimating gðxkÞ, then set xkþ1 ¼ z. Otherwise, set xkþ1 ¼ xk.

Step 4. Increment k and return to Step 1.

ICARS is a GPRS algorithm satisfying the improving bias property, with

akðyÞ ¼
ak for y < 0,
1� ak for yP 0;

�

due to the sequential test in Step 2. This test is not fully specified by the
algorithm description. Many sequential experiments could be designed to
fit the parameters given (see, e.g., [8, 10] for the theory of sequential analy-
sis). In this case, all such experimental designs are on the same poor foot-
ing; although intuitively attractive, ICARS has a fundamental flaw, as
shown in the following theorem. Assume the distribution of gðzÞ is abso-
lutely continuous where z � d. Also, for simplicity, assume that the noise
magnitude is fixed at a known value rx ¼ r for all x 2 S.
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THEOREM 3.1. The expected number of function evaluations required by
ICARS for each pass through the loop (Steps 1–4) is infinite.

Proof. Fix the value of the loop counter k. Let xk and z be two fixed points
in S. Now each noisy evaluation of gðxkÞ and gðzÞ can be considered as a
noisy observation of d ¼ gðzÞ � gðxkÞ; thus it will be a Gaussian variable
with unknown mean l ¼ gðzÞ � gðxkÞ and known variance 2r2.

Let Dðl; 2r2; akÞ represent the expected number of samples of indepen-
dent random variables, normally distributed with mean l 6¼ 0 and variance
2r2, required to choose between l < 0 and l > 0 at confidence level ak,
under the sequential test selected for Step 2. The distribution of gðxkÞ is
absolutely continuous (this can be seen by induction, starting with the
absolute continuity of the distribution of gðzÞ). Find an interval ðq; rÞ on
which the distribution of gðxkÞ is minorised by a positive constant. The dis-
tribution of gðzÞ on this same interval must also be minorised by a positive
constant. Their joint distribution can now be viewed as a nontrivial mix-
ture of the distribution in which gðzÞ and gðxkÞ are independently and uni-
formly distributed on this interval, and a remainder distribution. In the
doubly uniform case, the expected number of passes through the inner loop
during the kth pass through the outer loop is

Z r

q

Z r

q

Dðgx � gz; 2r2; akÞ
ðr� qÞ2

dgzdgx:

This integral diverges, provided that for all r and ak, Dðl; 2r2; akÞ is
bounded below by a multiple of of 1= jl j where l 6¼ 0; the remainder of
the proof establishes this bound.
We use a stochastic coupling argument. Without loss of generality fix

l > 0, and for simplicity assume henceforth 2r2 ¼ 1. Let f represent the
density function of the standard normal distribution. Define

f̂ðxÞ ¼ fðx� lÞ; x < 0,
fðxþ lÞ; xP 0:

�

Clearly
R1
�1 f̂ ðxÞ dx ¼ 2ð1� UðlÞÞ, and moreover

Z 1

�1
f̂ ðxþ lÞ � f ðxÞ dx ¼

Z 1

�1
f̂ ðx� lÞ � fðxÞdx ¼ UðlÞ � 1

2
;

so that by normalising we can create three probability density functions,

fAðxÞ ¼
fðxþ lÞ � f̂ðxÞ

UðlÞ � 1=2
; fBðxÞ ¼

f̂ðxÞ
2ð1� UðlÞÞ ; fCðxÞ ¼

f ðx� lÞ � f̂ ðxÞ
UðlÞ � 1=2

:

Now suppose the random variables Y and Y0 are constructed as follows.
With probability 2ð1� UðlÞÞ, we let Y be a random variable with distribu-
tion fB, and set Y0 ¼ Y. Otherwise, we let Y and Y0 be independent random
variables with distributions fC and fA. Then the marginal distributions of Y

608 DAVID L.J. ALEXANDER ET AL.



and Y0 are normal with variance 1 and means l and �l, respectively, but
with probability 2ð1� UðlÞÞ > 1�

ffiffiffiffiffiffiffiffi

2=p
p

l we have Y0 ¼ Y.
Now let fðYj;Y

0
jÞ:j ¼ 1; 2; . . .g be an IID sequence of ordered pairs distrib-

uted like ðY;Y0Þ in the previous paragraph. Define the stopping time J as
the first index j for which Yj 6¼ Y0j. Then J is geometrically distributed with

EðJÞP
ffiffiffi

p
p

=ð
ffiffiffi

2
p

lÞ: ð5Þ
Note that fYjg is an IID sequence of normal random variables with mean
l and variance 1, and fY0jg is similar but with mean �l.
Let T be the event that, given the sequence fYjg, the sequential test will

terminate at some step j < J. This can be partitioned into two events T<
and T> according to whether the test, upon terminating, infers that l < 0
or that l > 0. Now T< is a subset of the event that both sequences fYjg
and fY0jg will lead to the decision that l < 0; this in turn is a subset of the
event that the sequence fYjg will lead to the decision that l < 0, and this
event can have probability no greater than ak. Thus PðT<ÞOak, and simi-
larly PðT>ÞOak.
It follows that, with probability at least 1� 2ak, the event T does not

occur. In this case, the sample size required from the sequence fYjg in
order to choose between the hypotheses l < 0 and l > 0 is greater than
J. (In the event T, of course, the sample size is bounded below by 1.)
Recalling (5), we have a lower bound for Dðl; 2r2; akÞ (which is the expec-
tation of this sample size) of

2ak þ ð1� 2akÞ
ffiffiffi

p
p

=ð
ffiffiffi

2
p

lÞ;
which is greater than ð1� 2akÞ

ffiffiffiffiffiffiffiffi

p=2
p

divided by j l j , as required. (
We have established the impracticality of the ICARS algorithm; its

expected computational effort per iteration is infinite. Therefore a practical
implementation of GPRS with improving bias will need to formulated
along slightly different lines.

3.2. FIXED SCHEDULE OF EVALUATION COUNT GROWTH

The previous approach amounted to testing each candidate point to a pre-
determined confidence level, without regard for the number of samples
required. In this section we consider the other extreme, which we will call
Increasing sample size acceptance–rejection search: we make a predeter-
mined number of function evaluations, without regard to the confidence
level.
Suppose fNk:k ¼ 0; 1; 2; . . .g is a sequence of natural numbers, and that

the decision between retaining xk or adopting z is made on the basis of Nk

noisy evaluations of each of gðxkÞ and gðzÞ. Denoting the corresponding
sample means by Mxk and Mz, the best decision is clearly to choose which-
ever of xk or z yields the smaller sample mean.
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Increasing sample-size acceptance–rejection search (ISSARS)
Step 0. Set k ¼ 0. Generate x0 � d.
Step 1. Generate a point z � d.
Step 2. Take samples of g of size Nk at xk and z, and compute the means

Mxk and Mz.
Step 3. If Mz <Mxk , then set xkþ1 ¼ z. Otherwise, set xkþ1 ¼ xk.
Step 4. Increment k and return to Step 1.

Whereas ICARS in Section 3.1 needs, in expectation, an infinite number of
function evaluations in each iteration, ISSARS proceeds in such a way that
any desired number of passes through the algorithm loop can be achieved
with a finite cost, known in advance.

THEOREM 3.2. If the error variances r2
x are uniformly bounded, the

sequence of points generated by ISSARS converges to the global optimum of
(P) with probability one.

Proof. Assume rx Or, say, for all x 2 S. Since the sample means are nor-
mally distributed, their difference is normally distributed as well, with mean
gðzÞ � gðxkÞ and variance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x þ r2

z

p

. The random variable

ðMxk �MzÞ � ðgðxkÞ � gðzÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
xk
þ r2

zÞ=Nk

q ;

then has the standard normal distribution. The probability of accepting the
candidate point z is equal to

P½Mz <Mxk � ¼ P
ðMxk �MzÞ � ðgðxkÞ � gðzÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
xk
þ r2

zÞ=Nk

q > � gðxkÞ � gðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
xk
þ r2

zÞ=Nk

q

2

6

4

3

7

5

¼ U
gðxkÞ � gðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
xk
þ r2

zÞ=Nk

q

0

B

@

1

C

A

(where U again denotes the standard normal cumulative distribution func-
tion). Thus the acceptance probability is bounded from below by

akðgðxkÞ � gðzÞÞ ¼ U
gðxkÞ � gðzÞ

r
ffiffiffiffiffiffiffiffiffiffiffi

2=Nk

p

 !

;

whenever gðxkÞ > gðzÞ and from above by the same expression whenever
gðxkÞ < gðzÞ. Since Nk !1, akðyÞ ! HðyÞ, in satisfaction of the improv-
ing bias property. The result now follows by Theorem 2.1. (

ISSARS is stricter, in terms of confidence required, for larger jumps up
or down, as is appropriate. Since our aim is to achieve optimal or nearly-

610 DAVID L.J. ALEXANDER ET AL.



optimal function values, it is more important to decide correctly whether a
proposed transition is an improvement or a deterioration if that improve-
ment or deterioration is large than if it is small. Thus the kind of nonuni-

formity shown in the convergence of U j gðxkÞ � gðzÞ j =ðr
ffiffiffiffiffiffiffiffiffiffiffi

2=Nk

p

Þ
� �

to 0,

specifically, that it is faster for larger j gðxkÞ � gðzÞ j , is appropriate. There
is, however, no reason to believe that the amount of extra strictness it
places on larger jumps is optimal. A good understanding of this approach
would require much more work.

3.3. SEQUENTIAL-ANALYTIC APPROACH

Calculation of an optimal schedule of evaluation count growth is likely to
be difficult or impossible, but a hybrid method somewhere in between the
methods proposed in the previous two subsections seems worth study. As
we have seen, an unswerving determination to know, with a predetermined
level of confidence, whether the current candidate point is an improvement
or a deterioration may lead us to make infinitely many function evalua-
tions in expectation. On the other hand, using a predetermined number of
function evaluations may waste time confirming what is already almost cer-
tain, in cases where the current point and the candidate point vary greatly
in objective function value.
The field of sequential analysis is concerned with hypothesis tests in

which the number of data collected is not known in advance; data are col-
lected until a decision can satisfactorily be made. A common example of a
sequential hypothesis test is the sequential probability ratio test (SPRT). In
this test, data are gathered until the ratio of the likelihoods of observing
the collected sample under two opposing hypotheses strays outside a con-
tinuation interval. Then, the hypothesis according to which the sample is
more likely is accepted. Sample size optimality results are known for the
SPRT and other standard sequential hypothesis tests [8]. A deeper study of
improving bias GPRS might view each pass through the algorithm loop as
a sequential analysis problem.

4. Conclusion

This article has considered generalisations of the pure random search algo-
rithm for global optimisation under the influence of observational noise.
Such algorithms can be analysed via the parametrised improving bias con-
dition. The method of Section 3.1, while intuitively reasonable, was shown
to require infinite expected effort for each pass through its main loop. On
the other hand, Section 3.2 discussed a method with prescribed effort at
each iteration, and proved its convergence to the optimum.
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